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On the square of x-" 
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Department of Statistics, University of Poona, Pune 411007, India 

Received 15 September 1982, in final form 5 July 1983 

Abstract. The square of I-" is evaluated, using Raju's definition of the pointwise product 
of distributions, and shown to differ from I-*" by a finite multiple of the infinite (non- 
standard) distribution corresponding to the square of 8'""'.  This result is used to derive 
identities establishing the finiteness of one-variable analogues of some propagator products 
in quantum electrodynamics. The one-variable identities may be applied to distributions 
f ,  g, concentrated on the null cone, A = 0, by defining f ( A )  g ( A )  = f g ( A )  and regularising 
to include the vertex of the null cone. It is pointed out that this procedure would lead 
to a finite electron self-energy without restricting the domain of the S matrix and without 
introducing an infinite difference between the bare and renormalised mass. It is concluded 
that any polynomial in 8 -  and its derivatives is finite and that unrestricted associativity 
holds for products of such polynomials. 

1. Introduction 

Mikusinski (1966) established the following identity for the square of the Dirac delta 
function: 

where the left-hand side is to be regarded as the distributional limit of S i  - 
T - * (x- l  0 S,)', no meaning being assigned to the individual terms. S, denotes an 
appropriate S- convergent sequence and 61 denotes convolution. 

We observe that, with Mikusinski's definition, ( x - ~ ) ~  is not the same as x -2  and, 
in fact, differs from it by an infinite amount. This peculiarity arises because the 
distribution x - l ,  corresponding to the principal value of x - l ,  differs from the function 
x . More interestingly, the state of affairs represented by (1.1) turns out to be of 
crucial importance for a rigorous resolution of the renormalisation problem ( 5  2). 

In addition, the identity 

-1  

. x-l = --is! (1.2) 

has been proved by several authors including Gonzalez-Dominguez and Scarfiello 
(1955), Mikusinski (1966), Fisher (1971). The result is also true with the symmetric 
product defined by Raju (1982a, to be referred to as R) ,  while both (1.1) and (1.2) 
follow if the product defined by Jones (1982) is symmetrised. Guttinger (1955) has 
derived a slightly different result. These two identities constitute the principal results, 
relevant to renormalisation, that have so far been obtained for products of distribution. 

@ 1983 The Institute of Physics 3739 
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In this paper we establish a generalisation of the above identities using the 
symmetric product defined in R. Our results suggest that the propagator products 
arising in quantum electrodynamics do not involve either infinite or arbitrary constants. 

There exist many different definitions of the product, but the definition in R has 
the following advantage. The usefulness of results like (1.1) and (1.2) is diminshed 
to the extent that the definition of the product involves arbitrariness. To restrict the 
arbitrariness possible in a definition, it was proposed in R that a definition, to be 
acceptable, should be applicable without restriction to both classical and quantum 
field theory. At present, no other definition of the product satisfies this criterion. 

Thus, the definitions of Konig (1953, 1955), Guttinger (19551, Taylor (1960), 
Bogoliubov and Parasiuk (1959), Akheizer and Berestetskii (1965) and de Jager 
(1964) are obtained by imposing (implicitly or explicitly) special restrictions on the 
space of test functions. The products, so defined, may be extended to the entire space 
of test functions, using the Hahn-Banach theorem, only at the expense of uniqueness. 
That is, the net result of this procedure is to replace the usual infinities by finite but 
arbitrary constants. Therefore, these definitions of the product of distributions must 
be supplemented by phenomenology in quantum field theory, and cannot be used at 
all in classical field theory. 

Although Mikusinski (1966), Fisher (1971, 1972, 1973), and Jones (1966, 1980, 
1982) use different techniques, these definitions too are not always applicable. For 
example, the first two do not define S2, whereas the last yields S 2 = 0 .  So when S 2  
occurs in isolationt the above definitions may not be used. 

On the other hand, the results obtained here and earlier applications to the 
calculation of transition probabilities and classical field theory (R, Raju 1982b) show 
that the definition in R does satisfy the above criterion. Naturally, one would prefer 
that definition of the product which is most generally applicable, 

Below we illustrate the relevance of (1.1) and (1.2) to the renormalisation problem. 

2. The problem of infinite self-energy 

The second-order term of the S matrix corresponding to the electron self-energy is, 
with usual notation (Bogoliubov and Shirkov 1959, to be referred to as BS), 

-i:+(x) - (x - y ) q ( y ) :  (2.1) 

where 

involves the product of the propagators (Green functions) S ' ( x )  and D'o(x). Here 
g"" is the metric tensor: goo = -g" = -g22  = - g 3 3  = 1, g"' = 0 if m # n. The Dirac 
matrices y" are defined by (BS, p 59) 

(2.3) y"y" + y m y n  = 2g"". 

t This happens while calculating transition probabilities in quantum field theory (R) ,  and in the study of 
gravitational screening (Raj, 1982b) in classical field theory. In fact, according to the Einstein-Maxwell 
theory, a S2 energy density may be obtained formally by an electric dipole distribution on a hypersurface 
(Raju 1983). 
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The photon (scalar) and electron (spinor) propagators are respectively given by 
(BS, pp 65 1-2) 

(2.4) 

(2.5) 

To obtain explicit expressions for these propagators, we express the approximate 
form of D'(x) ,  near the null cone, as follows: 

where 
D'(x)  = (1/21r)S-(A)-(m2/81r) L (2.6) 

A = (x')' - (XI)* - (x')' - (x3)' (2.7) 

S-(A) = ;(S(A)-i/lrA) L = : [ 8 ( A ) - ( 2 i / l r )  log$mlA1"*1 

and 8 is the Heaviside function. 
If we naively assume the chain rule 

8,f (A = f '(A ) a d  (2.8) 

$!(A) = 2f'(A )x* (2.9) 

where f is a one-dimensional distribution and f' its derivative, then we have 

where x  ̂ is defined as in (2.5). Observing that L' = 6-, we obtain 

D6 (x) = (1/2lr)S-(A ) 

(2.10) 

Using the well known properties of the Dirac matrices (BS, p 290, Bjorken and Drell 
1964) 

i im ' m m 3  
lr 41r 21r 857 

S'(X) =- SL(A)x* -- S-(A)x* +-&(A) -- L.  

(2.11) 

and substituting (2.10) in (2.2), we obtain the following expression for the 'singular' 
part of z (x ) :  

(2.12) 

the argument A having been dropped for simplicity. 
We wish to obtain a finite S matrix in such a manner that (a) the finiteness of the 

S matrix does not depend on the value of the phenomenological constant m, and (b) 
recourse to the fiction of a bare mass, infinitely different from the phenomenological 
mass, is not necessary. Clearly, a necessary condition for this to happen is that the 
following products of one-dimensional distributions should be finite: 

( i l r2/e2)C - (X I=  -is' + ~ - i + m s Z  + 2 m 2 ~ 2 _ i - $ n 3 ~  

If we use the symmetric product defined in R, then by the Leibniz rule 
(R, theorem 3)  
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and the major difficulty lies in proving the finiteness of 8'. Evidently, this can be 
done provided the identities (1.1) and (1.2) are valid with the symmetric product. 

Similarly, the photon self-energy diagram corresponds to the term (BS, pp 293-4) 

- i  1 :Am(x)IIm"(x -y)A,(y): 
m.n 

(2.15) 

where 

I I""(x)= - i e 2 T r  ymSc(x)ynSC(-x)= - i e2TrymSC(x)ynSc(x )  (2.16) 

since S' is actually a function of A ,  and A is an even function of x. Proceeding 
in the manner indicated above, we see that the major difficulty lies in proving the 
finiteness of 

= $[(s ' )*  - ( 1 / 2 ) ( 1 / x ~ ) '  + ( 2 i / n ) ~ '  o (I/x*)]. (2.17) 

We reiterate that the above examples are illustrative and that the finiteness of S ? ,  
(8 1)* etc, in the one-variable case, only provides necessary conditions for the finiteness 
of self energies. However, these necessary conditions are non-trivial since, for any 
one-variable distribution f, f ( A  ) behaves (locally) like a one-variable distribution about 
any point of the null cone other than the vertex. 

In fact, we could define the product of two distributions, concentrated on the null 
cone, by 

f ( A ) .  g ( A ) = f g ( A )  (2.18) 

the right-hand side being defined over the entire null cone by means of regularisation 
(Gel'fand and Shilov 1964). From the final formulae we obtain, it is clear that such 
a regularisation would certainly exist and be unique for products of the type S?' 8'"'. 
Thus, with an additional condition like (2.18) our results are just as well applicable 
to the four-dimensional case. A subsequent paper will present a more detailed account 
of the four-dimensional situation, based largely on the results proved here for the 
one-dimensional case. 

3. Generalisation of Mikusinski's identity 

D, S will denote the spaces of infinitely differentiable functions on the real line that 
are compactly supported and rapidly decreasing respectively. D' ,  S' will denote the 
corresponding spaces of distributions and tempered distributions. D(0,  1 ,2 ,  . , , , n )  = 
{r$ ED, r$ (0) = q5'(0) = . . . q5'"'(0) = 0} . a n  will denote a delta convergent sequence 
obtained by putting 

8, ( x )  = ncr(nx) (3.1) 
where (T is a symmetric, infinitely differentiable function with support contained in 
[ - 1, 13,j cr!x) dx = 1 and a(0) # 0. 

Forf, g c D ' ,  

f .  g = n = w  lim * ( f , g )  f O g = i ( f . g + g . f )  f n  = f @ &  ( 3 . 2 )  

where * ( f n g )  denotes the non-standard extension (Stroyan and Luxemburg 1976) of 
the sequence of distributions f n g  and limn=, denotes the evaluation of the o t h  term 
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of this sequence for a fixed positive infinite integer w .  Whenf g is finite, this operation 
corresponds to taking the distributional limit of fng.  To simplify notation, the * will 
not be used in future. 

The distributions X - "  are defined by 

(3.3) 

where f i n '  denotes the n th distribution derivative of f .  
The first theorem generalises ( 1 . 1 ) .  To avoid dealing with subtle relationships 

between different notions of convergence, we shall present a straightforward though 
slightly long proof. 

Theorem 1. 

(n  !12 1 
I T 2  x Z n C 2  

2 

n = 0 , 1 ,  . . . , i n )  2 1 n '  
(8 1 -&i) =--- (3.4) 

Before proving the theorem, we state and prove some lemmas which establish the 
nature of the distribution (x-")'. 

Lemma 1. 

( x - " , x " h ) = ( l ,  h )  V h  E D ,  n = 1 , 2 , 3 , .  , . . 

Proof. Clearly 

( x - ' , x h ) = P  x - ' ( x h ) = P  h = h = ( l ,  h ) .  5 I I  
For n > 1 

(x-", x " h )  = [( - l ) n - ' / ( n  - l ) ! ] ( ( x - ' ) ' " - " , x "h )  

= [ ( n  - l ) ! ] - ' ( , x - ' ,  (x"h )'"-") 

(3.7) 

(3.9) 

Lemma 2. For n = 1 , 2 , 3 , .  . , 
( ( x  -" I2 ,  h )  = (x -'", h )  V h E D ( O , 1 , 2  , . . . ,  n - 1 ) .  (3.10) 

Proof. For h E D  (0, 1 , 2 ,  . . . , n - l ) ,  there exists a g ED such that h = x"g (Zemanian 
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1965). By lemma 1 

( ( x - ~ ) ~ ,  h )  = Iim (x;"x-~, x " g )  = lim (x - " ,  x"gx;")  
m =U m =U 

= lim ( x i n ,  g )  
m =w 

= ( X - " ,  g )  = [ (n  - l ) ! ] - l ( x - l ,  g '"-") .  

On the other hand 

( X - 2 n ,  h )  = ( X - 2 n ,  x " g )  = [(2n - l)!]-l(x-l, ( X n g ) ( 2 n - 1 ) )  

(3.11) 

) *  (3.12) 1 2 n - 1  n !  ( x  - 1 ,  n - i g  ( 2 n  - 1 - i )  

- - (2n - l ) !  i = o  f( i )m 
If i <n, then 

) 
(x-l, X n - t g 1 2 n - l - i )  ) = ( X n - i - l  ( 2 n - 1 - 1 1  

= ( -  ~ ) n - i ( ( ~ n - i - l ) ( n - i I ,  g ( n - l ) )  

7 g  

= 0. (3.13) 
Thus, the only term that survives in the summation in (3.12) is the term corresponding 
to i = n ,  and this term yields the contribution 

1 ( 2 n  - 1)" q x 4 ,  g ( n - l l  )=- 1 ( x - l ,  g'"-"). 
(2n -l)!  n (n - l)! 

The result follows. 

Corollary 1. 

(3.14) 

(3.15) 

Proof. ( x - " ) ~ - x - ' "  vanishes on D(0,  1, 2 , .  . . , n - 1 )  which is the null space of S ,  
S ' ,  . . . , S ( " - ' ) .  The result follows from a standard theorem (Rudin 1974). 

Lemma 3. As m + 00, x i n  + x - ~  uniformly on any set A 
belong to the closure of A ,  n = 1, 2, 3, . . . . R such that 0 does not 

Proof. By definition, 

by a simple change of variables (my = z ) .  
Since 0 does not belong to the closure of A 

k = inf{lx I ,  x E A }  > 0. 

(3.16) 

(3.17) 
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If we choose m so large that (mk)-'  << 1, then for x E A 

( x  -$" r = O  
(3.18) 

Since the power series is uniformly convergent for Iz I s 1, so that Iz/mxl s l /mk,  one 
may integrate term by term to obtain 

which may be rewritten as 

(3.20) 

using I!, U ( Z )  dz = 1. To obtain a uniform bound on the right-hand side of (3.20), 
we observe that I z r / s  1 for 121 s 1 and put f!, I ~ ( z ) / d z  = p  so that, for x E A ,  

=pk-" [ ( l -  l /mk)-"  - 11. 

The result follows by observing that limm+03(l - l /mk)-" = 1. 

Lemma 4. 

(3.21) 

(3.22) 

where 6: are defined by (3.15), for O S i  S n  - 1, n = 1, 2, 3, . . . , 
Proof. We select functions hi ED which behave like x i  in a neighbourhood B of zero. 
Then 

( ( x - " ) ~ - x - ~ " ,  h i )  = (-l)'i!by. (3.23) 
Using the definitions of X- ' "  and (x-"I2, and assuming without loss of generality that 
B contains the interval [ - 1, 13, we obtain 

(x - ' " ,  hi)  = [(2n - I ) ! ] -~ (x -~ ,  hj'"-") 

(3.24) 

( x - l ,  ( X k n  * hi)'"-") ( ( x - " ) ~ ,  hi )  = lim - 
m = -  ( n  - l ) !  

1 

S i n c e h i = x i  on[-1,  1 ] , a n d i ~ n - 1 < 2 n - 1 f o r n s 1 , h ~ ' " - " = O o n [ - 1 ,  11. So 

(3.26) 
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Before evaluating the remaining integrals in (3.24) and (3.25) we use the elementary 
formula for integration by parts 

(3.27) 

and define 

ct i  = lim c & ( m ) .  (3.28) 
m -m 

c Ti and c ii are defined analogously, with the limits of integration being taken from 
--CO to - 1. Since ,xin + x - "  uniformly, as m +-CO, on [ l ,  -CO) and ( - C O ,  - 11, and hi 
is bounded 

Thus 

(3.29) 

(3.30) 

To avoid some laborious combinatorics in the evaluation of c; we proceed as 
follows. 

(3.31) 

since hi vanishes at CO and behaves like x i  in a rieighbourhood of 1. It follows that 

(3.32) 

The upper limit again contributes zero because, apart from a numerical factor, 
equals x -2n + ' * I  which vanishes at -CO. Using (3.27) ( x  - 1 ) i  y 2 n -  2-11 

m X 

c:, = -2n+r (3.33) 

since i s n -- 1 < 2n - 1 so that ( x ' ) ' ~ ~ - ' )  vanishes. 

standard rule for differentiating a convolution 
To evaluate cf, similarly, we have only to recall the definition of x G k  and the 

13.34) ( f  8 g)'" '  =f'"' 0 g f E S ' , g E S , c x  = 1 , 2 , 3 , .  . . . 
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so that derivatives of x;' may be calculated exactly like derivatives of X - ' .  Moreover, 
lemma 3 applies in a neighbourhood of 1, so that 

(3.35) 

c l i  and cyi are obtained similarly and it follows that 

The additional factor of i- l)-i is permissible in the right-hand side of (3.36) which 
is 0 for i odd because the integrand is antisymmetric in that case. 

To evaluate the remaining term in (3.30), we recall that h l  = x i  on [ -  1, 11 and 
apply the Leibniz rule to obtain 

Amongst the integrals appearing in the above summation, the principal value needs 
to be taken only when j = i ,  and this term yields the contribution 

To complete the proof of the lemma, it remains to show that c3i = 0, where 

(3.38) 

(3.39) 

The integrals in (3.39) are ordinary integrals since x,' is an infinitely differentiable 
function as is for j G i - 1. To evaluate these integrals we observe that, apart 
from a numerical factor, x,*"+f+ l  is the (i- j) th derivative of . Integrating 
by parts (i - j )  times and replacing x i k  by x - ~  in the limit of the right-hand side as 
m + 00, we obtain 

= -[ I?-[ 1:; 

(3.40) 

It follows that 

For odd values of i the second factor on the right is zero, and for even values of i 
the first factor may be shown to be zero by applying the Leibniz rule to the ordinary 



3748 CKRaju 

function (x-" xi)"-" and putting x = 1.  Thus cji  = 0 in all cases and the proof of the 
lemma is complete. 

Proof of theorem 1. In view of 

[#"'I2 = (-1)" f (-l)'(~)s:2"-')(o)s'" 
I =o I 

(3.42) 

and corollary 1 and lemma 4, (with n replaced by n + l) ,  we have only to show that 

(3.43) 

If j is odd (3.43) holds, both sides vanishing on account of the assumed symmetry of 
u in (3 .1) .  If j is even, we proceed as follows. 

1 -2n- l+ ,  [.rr2/(2n - - ~ ) ! I ~ F ~ - J ) ( O )  = P I x x u  

We use the non-normalised Fourier transform 

(3.44) 

so that the Parseval equality reads 

(f, 6 )  = (1 /2d(J  4) f E S ' ,  4 E S  (3.45) 

where 6 denotes the complex conjugate of 4. Moreover (Gel'fand and Shilov 1964), 

(3.46) n-1 . *  
( x i " ) - ( a ) = ( x - " )  . s ,  =in- a sgna  *i ,(a) 

(n - l ) !  

since 8,  E S.  
We wish to conclude that 

( x - l ,  X;2n+'-1)= (1/27r)((x-l)., (x i2"+' - ' )=)  

= [ x / 2 ( 2 n  - j ) ! ]  (-i)2n-Ja2n-J'5 S m ( a )  da  

= - j ) ! ~ ( [ s ' ~ ~ - ' ~  j,;,,,) 
= [7r2/(2n - j ) ! ] ( S ( 2 n - ' J ,  8,) 

= [IT2/(2n - j ) ! ] S : " - " ( O )  (3.47) 

I 

(where the last of (3.47) holds because j is even, so ( -  1)2n-' = 1). 
To justify this conclusion it is necessary to justify the use of Parseval's equality 

for x i k  which belongs to neither D nor S .  But, for any k ,  x G k  is square integrable, 
by lemma 3, as soon as m is large enough. Moreover, the Fourier transform of x i k  
does not change if x i k  is regarded as a square integrable function rather than a 
tempered distribution. So by Parseval's equality for square integrable functions 
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Hence it would suffice to show that 

To prove this we select infinitely differentiable functions g l  and g 2  so that 

gib) = 1, x < - 2  g2(x) = 1 ,  x > 2  

= 0, x 2 - 1  = 0, x s l .  

If 

g3b) = 1 -g1ix) x s l  

= 1 -g2(x) x z l  

then g3 is also infinitely differentiable and 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

lim x i '  (gix,;l") = P x-'(gixGk) i = 1, 2, 3.  (3.53) 
P-m I I 

For i  = 1 , 2 ,  the above result is valid by lemma 3.  Fori = 3 i t  is valid because g3x ik E D. 
Summing over i we obtain (3.49) and the proof of the theorem is complete. 

The next result generalises (1.2). 

(3.54) 

Proof. From equation (2.42) of R we have 

6(2n-1'. (3.55) (2n - 2 - i ) !  - 2 n + l + i  ( n  - l)! 
i = O  i ! ( n - i - l ) !  (2n - l ) !  

"-1  

. X - "  = 1 (-1)i xu (0)6"'+ (-1)" *("-U 

For the other product we have the corrected equation (R, Corrigendum) 

(3.56) 

The result follows by observing that x;~"~'"(O)=O if i is even (because U is 
symmetric), and if i is odd the coefficients of 6"' in (3.55) and (3.56) differ only in sign. 

Corollary 2. 

(3.57) 

Here and elsewhere the top signs go with the top and bottom with bottom. 
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Proof. The proof follows by straightforward computation, using theorems 1 and 2, 
and will be omitted. 

then (3.57) reads 

[ ( x  f is )-" 3' = ( x  * is 
From (3.59) one may be inclined to guess that 

( x  * ia)-" 0 ( x  f ig) -"  = ( x  *is)-"-" 

and 

[ ( x  *is)-"]" = ( x  *is)-"". 

(3.59) 

However, with the product (3.2) it might happen that ( f 2 ) ' # f . f 3 .  The next 
theorem shows that this pathology does not occur for symmetric products involving 
powers of 6-. 

Proof. Assume inductively that (3.60) holds. There is a basis for induction since 
for n = 1, 

(3.61) 

from theorems 1 and 2. 

for O s j s n  
By induction hypothesis applied to a!!' and si"-", and using 8'0' = a-, we have 

6'" Qs'"-"= (i/27r)-"j!(n -j)!aL+' 0 ay++'-'. (3.62) 
Another expression may be obtained for the left-hand side using the Leibniz rule. 

6. (-JsI"' =[& 0s'"-"]'-s' os("-" (3.631) 

6' (Js'"-') =[s ' (3 '"-2 ' ] ' - sy  osY-2' (3.632) 
62-l)  Os(n*l-J) =[a"-') os'_"-f)]t-s") os?-,) (3.63j) 

(3.63k) 
Successively substituting the right-hand side of each equation for the last term on 

the right-hand side of the preceding equation, and using the symmetry of the product, 
we have for 0 s j s n 

89) 0 s F - J )  = (-1)r-~-1[6:-1) 0 s?-r)]t+ (-1)k-~sp-l) 06p), (3.64) 

First suppose n = 2k - 1. Then 

6- ( k - 1 )  0"="'k-'' 0s("-" ']Ls(_ '  os'k-1) 

k 

r = J + l  
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= (i/27r)[(r - I ) !  (n - r ) ! / n  !]6?+'). (3.65) 

Moreover, (3.63k) can be rewritten 

S'k"' 0 a!!' = $[S 'k- ' )  0 ~ 3 l " - ~ ' ] '  = $(i/27r){[(k - 1)! I2 /n  !}6!"". (3.66) 

Hence, for 0 s j s n 

Comparing (3.67) with (3.62) we see that, to prove the theorem for n = 2k - 1 ,  it 
suffices to establish 

To prove (3.68) we write 

(3.68) 

(3.69) 

so that, after interchanging summation and integration, (3.68) can be rewritten 

The first term on the right of (3.70) can be simplified: 

k 

= ( - l ) j ( l  -X)"(-x)-' 1 ( - X y ( l  - x ) - r  
r = j + l  

= ( - l ) j ( l  -X)"-j-l(-x)j{l - [ - x / ( l  --x)Ik-j}/{l - [ - x / ( l  - x ) ] }  

(3.71) 
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using n = 2k - 1. Integrating, using (3.69), we see that (3.70) reduces to 

r(j + i ) r ( 2 k  - j )  - - r(j + i ) r ( 2 k  - j )  - ( - 1 ) k - J  r ( k ) T ( k  + 1 )  + &-1)k-j T ( k ) r ( k )  (3.72) 

which holds since T ( k  + 1 )  = k T ( k )  and r ( 2 k  + 1) = 2 k r ( 2 k ) .  

r ( 2 k  + 1 )  r ( 2 k  + 1 )  r ( 2 k  + 1)  r ( 2 k  1 

When n = 2k, (3.63k) must be modified to read 
8 -  i k - 1 )  os- i n c l - k i  =[s?-1) asP-k ) ] t - -~ (k )  as?)  (3.63 k I )  

Moreover, by corollary 2 

(3.74) i k )  2 -  [S- I - ( i /27r)[(k!) ' / (n  + l)!]S?"".  

Thus, to prove the theorem, it suffices to establish 

(3.75) may be proved along the same lines as (3.68), and this completes the proof of 
the theorem. 

An analogous result is valid for 8,. 

Proof. The proof is similar to that of theorem 3 and will be omitted. 
The conclusions below are immediate consequences of the above theorems. 

4. Conclusions 

With the symmetric product, any polynomial in 6- and its derivatives is finite and 
unrestricted associativity holds for symmetric products of such polynomials. The result 
is also true for 8 ,  separately, though the product 6- - 8, is infinite. 
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